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duces antinociception and hypothermia. Because the antinociceptive effect in rats
is partially dependent on opioid and cannabinoid CB1 receptor activation, we determined if activation of
these receptors also contributes to the hypothermic effect of APAP. Rats injected with APAP (100, 250, 375 or
500 mg/kg, i.p.) displayed dose-related hypothermia. For combined administration, the hypothermic effect
of APAP (400 mg/kg, i.p.) was not altered by pretreatment with: naltrexone (10 mg/kg, s.c.), a non-selective
opioid antagonist; naltrindole (1 mg/kg, s.c.), a delta opioid antagonist; nor-binaltorphimine (10 mg/kg, i.
p.), a kappa opioid antagonist; SR 141716A (3 mg/kg, i.m.), a cannabinoid CB1 receptor antagonist; or JTC-801
(1 mg/kg, i.p.), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist. The demonstration that APAP
produces hypothermia independent of opioid, cannabinoid CB1 or NOP receptor activation is contrary to its
antinociceptive effect, which requires opioid and cannabinoid CB1 receptor activation.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction
Themechanism of action of acetaminophen (APAP) remains unclear
120 years after its original synthesis. It penetrates the brain following
peripheral administration, and evidence suggests a central component
to its mechanism of action (Björkman, 1995). Unlike traditional non-
steroidal anti-inflammatory drugs, APAP does not significantly bind to
the cyclooxygenase (COX) (prostaglandinH2 synthase, PGHS) isozymes,
COX-1/PGHS-1 or COX-2/PGHS2, at analgesic doses (Hinz and Brune,
2007).Amajor therapeutic useofAPAP, in addition to relievingpain, is to
reduce fever caused by bacterial and viral infections and by clinical
trauma such as cancer or stroke (Oborilová et al., 2002; Prescott, 2000).
A less recognized effect of APAP is its capacity to producehypothermia in
the absence of fever. For example, therapeutic doses of APAP cause
hypothermia in humans (e.g., in febrile children or HIV or stroke pa-
tients) andhighdoses ofAPAP inducehypothermia inmice (Ayoub et al.,
2004; Denes et al., 2004; Dippel et al., 2003; Li et al., 2008; Van
Tittelboom and Govaerts-Lepicard, 1989; Walker et al., 1981). The
mechanismofAPAPhypothermia, especially in regard to themessengers
and receptors which initiate the process, is poorly understood. APAP-
induced hypothermia in mice is accompanied by a reduction in brain
levels of prostaglandin E2 (PGE2), and (PGHS-1b) (COX-3) has been
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proposed to account for this hypothermic effect (Ayoub et al., 2004).
However, there is no consistent evidence in the literature that central
PGE2 participates in the control of normal body temperature in any
species, and a recent study demonstrated that APAP produces hy-
pothermia in mice by a COX-3-independent mechanism (Aronoff and
Romanovsky, 2007; Satinoff, 1972; Li et al., 2008).

One approach to elucidating the process of APAP hypothermia is to
identify receptors which play a permissive role in the hypothermia.
Two lines of evidence suggest a potential role for opioid and canna-
binoid receptors. First, the antinociceptive effect of APAP in rats is
partially dependent on opioid and cannabinoid CB1 receptor activation
(Bujalska, 2004; Ottani et al., 2006). Second, cannabinoid CB1, kappa
opioid or delta opioid receptor activation causes hypothermia in rats
and mice (Rawls et al., 2002, 2005; Baker and Meert, 2002; Handler
et al., 1992; Spencer et al., 1988; Geller et al., 1982). Thus, we hypoth-
esized that cannabinoid CB1, kappa opioid, or delta opioid receptor
antagonism would reduce a significant proportion of APAP-induced
hypothermia. We also investigated a role for nociceptin/orphanin FQ
peptide (NOP) receptors in the hypothermia.

2. Methods

2.1. Animals

All animal use procedures were conducted in strict accordance
with the NIH Guide for the Care and Use of Laboratory Animals and
were approved by the Institutional University Animal Care and Use
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Fig. 1. Effect of APAP (APAP) on body temperature. APAP (100, 250, 375 or 500 mg/kg)
or vehicle (VEH) was injected following a 90-min baseline interval. Data were
expressed as change in body temperature [ΔTb (°C)] compared to baseline. N=7–8 rats
per group. ⁎Pb0.05 compared to VEH.
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Committee. Male Sprague–Dawley rats (Zivic-Miller, Pittsburgh, PA,
USA) weighing 225–250 g were housed 1 per cage for a minimum of
5 days before experimental use. Rats were maintained on a 12-h light/
dark cycle and fed rat chow and water ad libitum. Each rat was used in
a single experiment and then immediately euthanized.

2.2. Materials

Acetaminophen(N-acetyl-p-aminophenol)waspurchased fromSig-
ma (St. Louis, MO, USA) and dissolved in dimethylsulfoxide (DMSO).
Drugs provided by the National Institutes on Health (Bethesda, MD,
USA) were naltrexone hydrochloride, a nonselective opioid receptor
antagonist; naltrindole hydrochloride, a delta opioid receptor antago-
nist; and SR 141716A (rimonabant) [N-(piperidin-1-yl)-5-(4-chloro-
phenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide
hydrochloride], a cannabinoid CB1 receptor antagonist. A kappa opioid
receptor antagonist, nor-Binaltorphimine dihydrochloride (nor-BNI),
was purchased from Tocris Biosciences (St. Louis, MO, USA). Naltrexone,
naltrindole and nor-BNI were dissolved in distilled water. SR 141716A
was dissolved in a 20% cremophor/80% distilled water solution. A NOP
receptor antagonist, JTC-801 [N-(4-amino-2-methylquinolin-6-yl)-2-
(4-ethylphenoxy-methyl)benzamide monohydrochloride], was a gen-
erous gift from Dr. Nurulain T. Zaveri (SRI International in Menlo Park,
CA, USA). JTC-801 was dissolved in a 20% DMSO/80% distilled water
solution. All drugs were administered in a volume of 1 ml/kg.

2.3. Experimental protocol

Body temperature experiments were conducted as described
previously (Rawls et al., 2007). Rats were placed in an environmental
room maintained at a constant temperature of 21±0.3 °C and relative
humidity of 52±2%. Following a 2-h acclimation interval, baseline
temperature measurements were takenwith a thermistor probe, which
was lubricated and inserted 6 cm into the rectum, and a digital ther-
mometer. Prior to drug administration, body temperature was deter-
mined every 30 min during a 90-min baseline interval. Initially, we
determined the dose- and time-related effects of APAP by itself on body
temperature. Following the baseline period, graded doses of APAP (100,
250, 375 or 500mg/kg, i.p.) were injected and body temperatures were
determined 30, 60, 90, 120, 150, 180 and 210 min post-administration.
Based on results obtained from this initial experiment, we selected a
fixed, submaximal dose of 400 mg/kg of APAP for our combination
experiments. In those experiments, rats pretreated with an opioid,
cannabinoid CB1 or NOP receptor antagonist were injected with
400 mg/kg of APAP and body temperatures were determined 30, 60,
90, 120, 150, 180 and 210 min post-injection (Table 1).

2.4. Data analysis

Three consecutive body temperature readings were averaged to
establish a baseline (predrug) temperature prior to drug administra-
tion. Raw data were transformed into ‘normalized ranks’ to address
non-normality and expressed as the mean±S.E.M. of the change from
Table 1
Dosing paradigm for receptor antagonist/APAP experiments.

Antagonist Dose
(mg/kg)

Administration
route

Pretreatment (prior to
acetaminophen injection)

Naltrexone (NTX) 10 s.c. 10 mina

Naltrindole (NTI) 10 s.c. 10 min
Nor-binaltorphimine (nor-BNI) 1 i.p. 24 h
SR 141716A 3 i.m. 30 min
JTC-801 1 i.p. 30 min

a Naltrexone was also administered a second time, 90 min following APAP administra-
tion, because of its relatively short half-life.
baseline body temperature. For the experiment investigating the
effects of APAP by itself, data were analyzed using a repeated mea-
sures, two-way analysis of variance followed by pair-wise multiple
comparisons incorporating the Bonferroni correction at the different
time points. For drug combination experiments, data were analyzed
using a Student's t-test (APAP group compared to antagonist/APAP
group) except for the naltrexone experiments, which were analyzed
with repeated measures two-way ANOVA. Values of Pb0.05 were
considered to be statistically significant.

3. Results

3.1. Effect of APAP on body temperature

Effects of progressively increasing doses of APAP (100, 250, 375
and 500 mg/kg) on body temperature are presented in Fig. 1. There
was a significant drug effect [F (4, 31)=26.38; Pb0.001] and time
effect [F (7, 217)=9.005; Pb0.001] but not a significant drug×time
interaction [F (28, 217)=0.8304; P=0.7143]. The highest dose
(500 mg/kg) of APAP produced significant hypothermia, compared
to vehicle, 60, 90, 120, 150, 180 and 210 min following administration
(Pb0.05). A maximal hypothermia of 2.7±0.5 °C was observed
120 min post-administration. A submaximal dose of APAP (400 mg/
kg) was used in all subsequent experiments.

3.2. Effect of opioid receptor antagonists on APAP-induced hypothermia

The effect of naltrexone (10mg/kg) on APAP-induced hypothermia
is presented in Fig. 2. There was a significant drug effect [F (3, 33)=
122.1; Pb0.001]; time effect [F (7, 231)=17.321; Pb0.001]; and drug×
time interaction [F (21, 231)=4.869; Pb0.001] (Fig. 2A). Compared to
drug-naïve rats (i.e., vehicle/vehicle), rats co-treated with a combina-
tion of vehicle and APAP (400 mg/kg) displayed significant hypother-
mia 60, 90,120,150,180 and 210min post-injection (Pb0.05) (Fig. 2A).
Rats co-exposed to a combination of naltrexone (10 mg/kg) and ve-
hicle also displayed significant hypothermia, compared to drug-naïve
rats, 60, 90, 120, 150 and 180 min post-injection (Pb0.05). However,
body temperatures of rats exposed to vehicle/APAP (400mg/kg)were
not different significantly from rats treated with naltrexone (10 mg/
kg)/APAP (400 mg/kg) (PN0.05).

Effects of naltrindole (1 mg/kg) and nor-BNI (10 mg/kg) on the
hypothermic effect of APAP (400mg/kg) are presented in Fig. 2B and C,
respectively. Rats exposed to a combination of naltrindole (1 mg/kg)
and APAP (400 mg/kg) displayed body temperatures that were not
different significantly from rats treated with APAP (400 mg/kg) by
itself (i.e., vehicle/APAP) (PN0.05) (Fig. 2B). A kappa opioid receptor
antagonist, nor-BNI (10 mg/kg) was also ineffective as body
temperatures in rats co-treated with nor-BNI (10 mg/kg) and APAP



Fig. 3. Effect of a cannabinoid CB1 or NOP receptor antagonist on the hypothermic effect of
APAP (APAP). Rats were injected with APAP (400 mg/kg) 30 min following the
administration of either SR 141716A (5mg/kg) or JTC-801 (1mg/kg). Datawere expressed
as change in body temperature [ΔTb (°C)] compared to baseline. N=6–8 rats per group.

Fig. 2. Effect of opioid receptor antagonists on the hypothermic effect of APAP (APAP).
A: Rats were injected with APAP (400 mg/kg) or vehicle (VEH) 10 min following the
administrationofnaltrexone (NTX) (10mg/kg)orVEH.NTX (10mg/kg)was administered
again 90min following APAP administration. B–C: Rats were injectedwith APAP (400mg/
kg) 10 min following naltridole (NTI) (1 mg/kg) or 24 h following nor-BNI (10 mg/kg)
administration. Data were expressed as change in body temperature [ΔTb (°C)] compared
to baseline. N=6–11 rats per group. ⁎Pb0.05 compared to VEH+VEH.
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(400 mg/kg) were not significantly different than the body tempera-
tures of rats exposed to APAP (400mg/kg) by itself (PN0.05) (Fig. 2C).
Prior work conducted in this laboratory has demonstrated that
naltrindole or nor-BNI does not alter body temperature when given
by itself (Wang et al., 2008).

3.3. Effect of a cannabinoid CB1 or NOP receptor antagonist on APAP-
induced hypothermia

The effects of SR 141716A (3 mg/kg) and JTC-801 (1 mg/kg) on the
hypothermic effect of APAP (400 mg/kg) are presented in Fig. 3. APAP
(500 mg/kg), when given by itself, produced hypothermia that was
not significantly different from the hypothermia produced by co-
treatment with APAP (400mg/kg) and SR 141716A (3mg/kg) or APAP
(400 mg/kg) and JTC-801 (1 mg/kg) (PN0.05) (Fig. 3A–B). This
laboratory has demonstrated that SR 141716A or JTC-801 does not
alter body temperaturewhen given by itself (Rawls et al., 2002, 2007).

4. Discussion

The present study tested the hypothesis that APAP produces hypo-
thermia in non-febrile rats that depends on opioid and cannabinoid CB1
receptor activation. We found that APAP produces hypothermia in rats,
an effect which is consistent with the hypothermic response to APAP in
humans (Denes et al., 2004; Dippel et al., 2003; Van Tittelboom and
Govaerts-Lepicard, 1989) and mice (Walker et al., 1981; Ayoub et al.,
2004; Li et al., 2008). Maximal hypothermia observed in rats (2.7
±0.5 °C)was similar to the peakhypothermia reported inmice (2–4 °C)
(Ayoub et al., 2004; Li et al., 2008). Although the dose of APAP used in
our experiments was high compared to its therapeutic dose in humans
(Björkman, 1995), its concentration remained below toxic levels in rats
and mice (Ganados-Soto et al., 1992; Hunskaar et al., 1986). Further-
more, similarly high doses are required to induce hypothermia in mice
(Ayoub et al., 2004).

Experimental results disproved the second portion of our hypoth-
esis — that opioid and cannabinoid CB1 receptor activation mediates
APAP-induced hypothermia. We had speculated that kappa opioid,
delta opioid and cannabinoid CB1 receptors would play a permissive
role in the hypothermic response to APAP because opioid agonists
produce hypothermia in rats and mice by activating kappa and delta
opioid receptors and cannabinoid agonists produce hypothermia by
activating cannabinoid CB1 receptors (Compton et al., 1992; Rawls
et al., 2002, 2005; Baker and Meert, 2002; Handler et al., 1992; Geller
et al., 1982). Yet, none of the receptor antagonists (naltrexone, nal-
trindole, nor-BNI or SR 141716A) tested in our experiments altered
APAP-induced hypothermia. The ineffectiveness of opioid and canna-
binoid CB1 receptor antagonists is different from their effects on APAP-
evoked analgesia in rats (Pini et al., 1997; Bujalska, 2004; Ottani et al.,
2006). Even though APAP lacks affinity for opioid receptors in vitro
(Pelissier et al., 1996), acute antagonism of kappa, delta or mu opioid
receptors reduces the antinociceptive efficacy of APAP in the Randall
and Selitto paw withdrawal test (Bujalska, 2004). Moreover, canna-
binoid CB1 receptor antagonism prevents the antinociceptive effect of
APAP in the hot-plate assay of thermal nociception (Ottani et al.,
2006). These combined results suggest that APAP-induced hypother-
mia and antinociception aremediated by dissimilar mechanisms, with
the antinociceptive effect depending on downstream activation of
opioidergic and cannabinergic systems and the hypothermic response
occurring independently of opioid and cannabinoid receptors (Pini
et al., 1997; Bujalska, 2004; Ottani et al., 2006).

NOP receptor activation also produces hypothermia in rats andmice
and modulates APAP-induced antinociception (Sandrini et al., 2005).
NOP receptors, and their endogenous ligand, N/OFQ, are distributed
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widely in the central and peripheral nervous systems (Mollereau and
Mouledous, 2000; Meunier, 1997). Prior work indicates that N/OFQ
administration causes hypothermia (Yakimova and Pierau, 1999; Chen
et al., 2001; Higgins et al., 2001; Rawls et al., 2007) whereas NOP re-
ceptor knockout, or knockdown, causeshyperthermia (Uezuet al., 2004;
Blakley et al., 2004). Unlike opioid and cannabinoid CB1 receptor ac-
tivation, which enhance the antinociceptive effect of APAP (Pini et al.,
1997; Bujalska, 2004; Ottani et al., 2006), NOP receptor activation in-
hibits APAP-induced antinociception (Sandrini et al., 2005). In our
experiments, we examined the effect of a NOP receptor antagonist, JTC-
801, on APAP-induced hypothermia and found that it was ineffective.
Because the dose of JTC-801 used here abolishes the hypothermic effect
of N/OFQ (Rawls et al., 2007), it is unlikely that NOP receptor activation
is a major factor in the hypothermic effect of APAP.

The present findings indicate that the hypothermic effect of APAP
is mediated by opioid and cannabinoid receptor-independent
substrates. One possibility is the APAP-sensitive PGHS isoform
PGHS-1b (COX-3), a splicing variant of PGHS-1 retaining intron-1
(Simmons et al., 2000; Chandrasekharan et al., 2002; Ayoub et al.,
2004). It has been suggested that selective inhibition of hypothalamic
COX-3 by APAP causes a reduction in brain levels of prostaglandin
(PGE2), believed to be the final fever mediator in the brain, and that
this action of APAP is responsible for its hypothermic effect (Ayoub
et al., 2004). At least three lines of evidence support a COX-3-related
mechanism: (1) APAP penetrates the brain following peripheral
administration (Courade et al., 2001; Anderson et al., 1998), rapidly
decreases COX-3 mRNA (Botting and Ayoub, 2005), and reduces brain
PGE2 levels (Ayoub et al., 2006); (2) COX-3 inhibitors aminopyrine
and antipyrine also cause dose-dependent hypothermia in rats and
mice (Polk and Lipton, 1975); and (3) intracerebroventricular APAP
administration produces hypothermia that is rapid in onset (Massey
et al., 1982). The proposed COX-3 mechanism of action for APAP is
controversial because of inconclusive evidence that PGE2 participates
in the control of normal body temperature and recent evidence that
hypothermia induced by APAP in non-febrile mice is not paralleled by
a significant, similarly transient decrease in brain or plasma PGE2
levels (Ayoub et al., 2004; Aronoff and Romanovsky, 2007; Satinoff,
1972; Li et al., 2008). Another mechanism of the hypothermic effect of
APAP may be related to its antioxidant and anti-glutamatergic
properties (Maharaj et al., 2004, 2006). Blockade of free radical
production inhibits PGE2 production and prevents fever (Gourine,
1995; Feleder et al., 2007), and antioxidants antagonize the elevation
of hypothalamic hydroxyl radicals generated by glutamate release
(Huang et al., 2004). Hence, the ability of APAP to inhibit glutamate-
induced neuronal excitability by reducing thiol groups attached to
NMDA receptor might contribute to its hypothermic, as well as
antipyretic, effects (Huang et al., 2004; Canini et al., 2003). The ability
of APAP to increase forebrain levels of norepinephrine might also
contribute to its hypothermic action (Courade et al., 2001). Indeed,
prior work shows that norepinephrine administered into the
hypothalamus causes hypothermia similar to that produced by
APAP (Feleder et al., 2004).

In summary, we report that APAP produces hypothermia in non-
febrile rats, and that hypothermia is not altered by pharmacological
antagonism of opioid, cannabiniod CB1 or NOP receptors. These data
provide pharmacological evidence that opioid, cannabinoid CB1 and
NOP receptors do not play a permissive role in the hypothermic effect
of APAP in rats. This is different from APAP-induced antinociception,
which is positively modulated by opioid and cannabinoid CB1 re-
ceptors and negatively modulated by NOP receptors (Pini et al., 1997;
Bujalska, 2004; Ottani et al., 2006; Sandrini et al., 2005).
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